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Although several thermal lattice Boltzmann models have been proposed, this method has not yet been shown
to be able to describe nonisothermal fully compressible flows in a satisfactory manner, mostly due to the
presence of important deviations from the advection-diffusion macroscopic equations and also due to numeri-
cal instabilities. In this context, this paper presents a linear stability analysis for some lattice Boltzmann models
that were recently derived as discrete forms of the continuous Boltzmann equation �P. C. Philippi, L. A. Hegele,
Jr., L. O. E. dos Santos, and R. Surmas, Phys. Rev. E 63, 056702 �2006��, in order to investigate the sources
of instability and to find, for each model, the upper and lower limits for the macroscopic variables, between
which it is possible to ensure a stable behavior. The results for two-dimensional �2D� lattices with 9, 17, 25,
and 37 velocities indicate that increasing the order of approximation of the lattice Boltzmann equation en-
hances stability. Results are also presented for an athermal 2D nine-velocity model, the accuracy of which has
been improved with respect to the standard D2Q9 model, by adding third-order terms in the lattice Boltzmann
equation.
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I. INTRODUCTION

The main goal of the lattice Boltzmann method is to
model the dynamical behavior of a fluid on the kinetic level.
This purpose is accomplished by calculating the evolution of
the distribution function in space and time, given a discrete
set of velocities.

The lattice-Boltzmann equation �LBE� was first intro-
duced by McNamara and Zanetti �1�, replacing the lattice gas
automata Boolean variables, �2�, in the discrete collision-
propagation equations, with their ensemble averages.

Higuera and Jiménez �3� proposed a linearization of the
collision term derived from the Boolean models, recognizing
that this full form was unnecessarily complex when the main
purpose was to retrieve the hydrodynamic equations.

Following this line of reasoning, Chen et al. �4� suggested
replacing the collision term with a single relaxation time
term, followed by Qian et al. �5�, who introduced a model
based on the Bhatnagar-Gross-Krook �BGK� model �6�, re-
trieving the incompressible Navier-Stokes equations with
third-order errors in the local speed.

The BGK collision term describes the relaxation of the
distribution function toward an equilibrium distribution. This
discrete equilibrium distribution was settled in lattice Boltz-
mann models by writing it as a second-order polynomial
expansion in the local fluid velocity, with adjustable param-
eters in order to retrieve the mass density, the local velocity
and the momentum flux equilibrium moments, which are
necessary conditions for satisfying the Navier-Stokes equa-
tions.

Thermal lattice Boltzmann models were firstly treated by
Alexander et al. �7�, who extended the Qian et al. second-
order equilibrium distribution to a third-order model for

solving some thermohydrodynamic problems, resulting in a
good agreement when compared with analytical solutions.

McNamara and Alder �8�, found a set of 13 and 26 restric-
tions that this expansion must satisfy to retrieve the correct
advection-diffusion macroscopic equations, respectively, in
two and three dimensions.

Nonlinear deviations in the momentum and energy equa-
tions, in the model of Alexander and co-workers, were found
by Chen et al. �9�, who introduced a fourth order polynomial
expansion into the equilibrium distribution, fitting adjustable
parameters. These authors used combinations of square lat-
tices for satisfying the restrictions imposed by the Chapman-
Enskog analysis and found a 16-velocity lattice in two di-
mensions and a lattice with 41 velocities in three dimensions.

With the exception of McNamara and Zanetti’s uncondi-
tionally stable LBE, �1�, all the above models have stability
issues �8,9�.

In these studies the equilibrium distribution was written as
finite expansions in the local velocity with free parameters
that were adjusted to satisfy some main restrictions to re-
trieve the full advection-diffusion equations. Consequently,
there is no formal link connecting the LBE to the Boltzmann
equation.

This connection has been first established by He and Luo
�10� who directly derived the LBE from the Boltzmann equa-
tion for some widely known lattices �D2Q9, D2Q6, D2Q7,
D3Q27� by the discretization of the velocity space, using the
Gauss-Hermite and Gauss-Radau quadrature. Excluding the
above mentioned lattices, the discrete velocity sets obtained
by this kind of quadrature do not generate regular space-
filling lattices.

Philippi et al. �11� derived a construction principle for the
LBE considering the velocity discretization problem as a
quadrature problem with prescribed abscissas, starting from
the Boltzmann equation. It was formally shown that the
number of discrete velocities is directly related to the order
of approximation of the discrete equilibrium distribution,
with respect to the full Maxwell-Boltzmann �MB� distribu-
tion and, consequently, to the highest order of the kinetic
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moments that are to be correctly retrieved. Similar results
were, almost simultaneously, obtained by Shan et al. �12�,
although using a different procedure.

In this manner, lattices that are able to retrieve second-,
third-, and fourth-order terms in the Maxwellian distribution
were derived.

The results of Philippi et al. were followed by a rigorous
Chapman-Enskog analysis of the derived LBE, �13�. It was
shown that, when the collision term is written as a BGK
single relaxation-time term, the first-order Knudsen internal
energy balance equations are only retrieved without errors
with the fourth-order LBE.

Three fourth-order two-dimensional models were derived
by Philippi et al.: The first two based on a set of 25 discrete
velocities and the third on a set of 37 velocities. The 37-
velocity model was the only one that was written with a
complete set of fourth-order Hermite polynomials and since
all these three lattice BGK �LBGK� models give the correct
thermohydrodynamics, it appeared to be important to deter-
mine in which manner the addition of these high-order Her-
mite polynomials affects the LBE stability in nonisothermal
problems.

The stability limits were also obtained in athermal prob-
lems, when the temperature deviations are kept null and the
sole source of instability is the local speed.

In both the athermal and thermal models it was found that
the main reason for instability is the lack of accuracy of the
LBE representation with respect to the full continuous Bolt-
zmann equation and that the attainment of larger stability
ranges requires an increase in the order of approximation of
the LBE.

This is an important result, since this also requires an
increase in the number of velocities and is somewhat in con-
tradiction with past studies dealing with simulations using
multispeed models where the addition of speeds being led to
an increase in instability �14�. In fact, in past studies, the
a posteriore nature of these methods provided no means to
avoid the stability issues in a satisfactory manner.

In this study, it is shown that the construction principle
derived by Philippi et al. �11�, leads to LB models, in which
stability can be enhanced by increasing the number of dis-
crete velocities in a systematic way.

It is also shown that stability can be improved by adding
higher order Hermite polynomials in the MB polynomial ex-
pansion, when the norm of such polynomials is preserved in
the discrete space, although this addition has no effect on its
first-order Knudsen number behavior. In this paper, this is
shown to be true for the D2Q9 athermal LBE.

This paper is organized as follows. In Sec. II the velocity
discretization procedure is briefly presented. In Sec. III,
some highlights of linear stability analysis are provided. The
stability maps obtained for the various models are also pre-
sented. Section IV concludes the paper.

II. DISCRETE VELOCITY MODELS
FOR THERMAL PROBLEMS

The LBE for collision-propagation schemes can be for-
mally considered as a particular case of an explicit first-order

upwind finite-difference numerical approximation of the con-
tinuous Boltzmann equation and can be written, for a given
point x at a time t, as

f i�x* + ci,t* + 1� − f i�x*,t*� = �i, �1�

where x*=x /h and t*= t /� are given in dimensionless lattice
units, ci are the usual dimensionless lattice vectors, h and �
are the spatial and time steps and �i is the discretized colli-
sion term, usually a collision model such as the BGK single
relaxation time model �6� or a multiple relaxation time model
�15,16�. In most cases the collision operator �i depends on
the explicit form of the local equilibrium distribution func-
tion, so when the velocity discretization is performed it is
necessary to choose a suitable form for this distribution.

For the BGK collision operator, a Chapman-Enskog
analysis shows that the correct hydrodynamic equations are
retrieved when the discrete distributions f i

eq have the same
moments as the MB distribution up to a third-order term for
isothermal problems and some additional fourth-order terms
for thermal problems. In many models this function is ob-
tained by a power series of the local velocity u, where the
coefficients of this expansion are chosen so that f i

eq follows
the relation

��p�eq =� feq����p���d� = �
i

f i
eq�p��i� , �2�

where feq��� is the MB distribution function.
In Philippi et al. �11�, the discretization of the velocity

space is considered as a quadrature problem, i.e., the discrete
distributions f i

eq in the right-hand side of Eq. �2� are replaced
by the value of a polynomial approximation of the MB dis-
tribution evaluated at the pole �i, multiplied by a parameter
Wi, which represents the weight to be attributed to each ve-
locity vector �i required by the quadrature condition.

Defining a dimensionless velocity �o= �kT0 /m�−1/2�, the
MB distribution can be written as an infinite series of Her-
mite polynomial tensors Hrn

�n���o� �16,17�,

feq��o� = 	 m

kT0

D/2 e−�0

2/2

�2��D/2�
n

1

n!
arn

�n�Hrn

�n���o� , �3�

where T0 is a reference and constant temperature, D is the
space dimension, and the coefficients arn

�n� are related to the
macroscopic properties at equilibrium and can be found us-
ing the orthogonality properties of the Hermite polynomials
�13�. An approximated form of the MB distribution f i

eq,N is
obtained when the polynomial expansion in Eq. �3� is trun-
cated in the Nth order. It is, nevertheless, important to note
that any moment of a velocity polynomial �p whose order is
equal to or lower than N will be the same as when it is
calculated with the full MB distribution:

� feq�p���d� =� feq,N�p���d� . �4�

In this manner, to retrieve the correct moments of the MB
equilibrium distribution in a discrete velocity space, based on
a few velocity vectors, a quadrature is performed, enabling
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the integration of the polynomial velocity functions up to a
chosen order, without errors. This allows us to write

� feq����p���d� = �
i

Wi f
eq,N��i��p��i� . �5�

The weights Wi can be written in terms of the conventional
dimensionless weights wi by using

Wi = wie
�o

2/2	2�kT0

m

D/2

. �6�

In Ref. �11�, the use of prescribed abcissas was proposed
to perform the quadrature, i.e., the velocity vectors �o,i are
chosen and weights wi and a scale factor are determined
from the quadrature restrictions. This scale factor relates the
dimensionless velocity vectors to the usual lattice vectors
through �o,i=aci. The authors also showed that when a lattice
that is invariant by coordinate permutation and reflection is
chosen, the following norm preservation equations assure the
orthogonality of the Hermite polynomials in the discrete
space:

�
i=0

b

�i�Hrn

�n���o,i��2 =
1

�2��D/2 � e−�o
2/2�Hrn

�n���o��2d�o �7�

for all Hermite polynomial tensors Hrn

�n� with an order lower
than or equal to N. In this manner, the discrete velocities are
chosen in such a manner as to make the number of
variables—the weights and the scale factor—equal to the
number of linearly independent equations given by Eq. �7�.
When this set of equations has a solution, this condition as-
sures that the norm of the Hermite polynomial tensors in
discrete space is the same as in continuous space.

By defining f i�Wi f��i�, it is possible to obtain the usual
form of the discrete equilibrium distribution used in the lat-
tice LBM,

f i
eq = wi�

n=0

N
1

n!
arn

�n�Hrn

�n��aci� . �8�

Some sets of velocities and the equilibrium distributions for
the third- and fourth-order models, which are used in this
study, can be found in the Appendix.

III. LINEAR STABILITY ANALYSIS

Instability is a common feature of numeric discrete meth-
ods. Since LBM �i� is based on polynomial approximations
of the full continuous Boltzmann equation and �ii� discreti-
zation is always performed with errors that are proportional
to some power of the spatial scale, h, and time step, �, �iii�
and the method is explicit in time, so the LBE is also subject
to numerical instabilities.

As discussed in Sec. II, the LBM can be considered as an
explicit first-order finite-difference method, so von Neumann
linear stability analysis can be applied to the LBE. In the
present von Neumann analysis, the aim is to obtain the re-
sponse of a system, described by a set of equations, which is
slightly removed from a given equilibrium state by a small

perturbation. When this perturbation is not absorbed by the
system itself, such an equilibrium state is considered to be
unstable and the mathematical description for this system is
unable to describe the system in this state. This is performed
using spatial wave perturbations, the effects of which can be
superposed, when this physical system is described by linear
equations.

Most LBE are nonlinear because they are based on colli-
sion operators that are quadratic in f i. This requires the lin-
earization of the LBE and, although this simplification limits
the analysis to small perturbations, it can provide valuable
information about the stability behavior of the LBE models.
The LBE linearization is performed by developing the colli-
sion term in a Taylor series around a global equilibrium dis-

tribution f̄ i:

f̄ i = �f i
eq�	̄,ū,ē �9�

related to an equilibrium state given by the set of variables 	̄,
ū, and ē, where stability is analyzed.

Noting that the collision operator is a function of f i, i.e.,
�i��i�f0 , f1 , . . . , fb� this Taylor expansion can be written in
the form

�i�f� = ��i� f̄ +
�
j

��i

� f̄ j



f̄

�f j + O��f j
2� , �10�

where �f i� f i− f̄ i. The zeroth-order term in Eq. �10� vanishes

because f̄ is an equilibrium distribution. Replacing this ex-
pansion in Eq. �1� and neglecting the second-order terms in
�f i,

�f i�x + ci,t + 1� − �f i�x,t� = �
j=0

b 
 ��i

� f̄ j



f̄

��f j� . �11�

Performing a discrete Fourier transform in Eq. �11� the
following equation for the k wave number component of �f i
is then obtained:

�f i�k,t + 1� = e−ici·k�
j=0

b �
�ij +
��i

� f̄ j



f̄
��f j�k,t� . �12�

The above equation gives the time evolution of the fluc-
tuation �f i�k , t� from its initial value �f i�k ,0�. For conve-
nience this equation will be rewritten using

��f i�k,t + 1�� = L̂��f i�k,t�� , �13�

where the Dirac notation for vectors was used and the opera-

tor L̂ is related to the matrix,

Lij = e−ici·k�
�ij +
��i

� f̄ j



f̄
� . �14�

Let the eigenvectors of Lij be denoted by �zl� and their
respective eigenvalues by zl. In the present case it is suitable
to choose these eigenvectors as a basis for representing the

perturbed state at t=0, ��f�k ,0��, because when the L̂ opera-

tor is applied on these vectors it results in L̂ �zl�=zl �zl�. In
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this manner, after t repeated applications of L̂,

��f�k,t�� = L̂t��f�k,0�� = �
l=0

b

bl�zl�t�zl� , �15�

where bl= �zl ��f�k ,0��. Equation �15� shows that the behav-
ior of ��f�k , t�� can be determined by its eigenvalues zl and,
consequently, that the solution will not diverge for t→
 if
the complex modulus of the eigenvalues zl are less than 1 for
all values of l.

In conclusion, the investigation of the stability of a physi-
cal state given by 	̄, ū and ē, requires, in von Neumann
stability theory, the calculation of the eigenvalues zl of the Lij
matrix. This state is considered to be stable when �zl� is
smaller than 1 for all values of k, whose moduli can assume
values from 0 to 2� since the Lij matrix elements depend on
the wavenumber through the periodic function e−ik·ci.

A. Stability maps of some two-dimensional LBE

In this section the procedure described in the previous
section is used to find the stability maps of some two-
dimensional LBE proposed by Philippi et al., �11�. We re-
strict our attention to the BGK, single relaxation time, colli-
sion model �6�,

�i =
f i

eq − f i

�*
, �16�

where �*=� /� is the dimensionless form of the relaxation
time.

The LAPACK++ �Linear Algebra Package for the C++
language� was used to numerically solve the eigenvalue
problem, since analytical solutions are only possible for a
few particular cases.

The use of numerical methods for obtaining the stability
maps is hindered by the large number of diagonalizations
required since the matrix must be evaluated for several val-
ues of the wave number k. In this manner, the dependence of
the Lij eigenvalues on the orientation of k was investigated.
The results showed that the most unstable case occurs when
vectors k and u are parallel, so in the analysis, the orientation
of k is restricted to this case. Previous studies on stability
have also considered this restriction �18,19�.

In particular, Sterling and Chen, �15� have also considered
vectors k and u to be parallel to the x axis. Nevertheless, it is
shown in Fig. 1 that this assumption can lead to erroneous
conclusions. In this figure, the stability limits of the local
speed speed u are shown for three different orientations of k,
for the D2Q9 athermal LBE. The symbol � gives the angular
orientation of vector k with respect to the x axis. In this case,
it can be seen that the most critical orientation corresponds to
�=� /4 and not to �=0 as in Sterling and Chen �15�. Thus it
can be concluded that the effect of this orientation on the
stability limits must be taken into account for each LBE.

For these reasons, for each LBE the stability is investi-
gated considering several values of the wave number k from
zero to � distributed in accordance with a fixed interval 
k
=0.005 and several values of the angle � in the range of 0 to
� /4 spaced by an interval of 
�=� /100.

1. Athermal models

Our analysis begins with a study of models that use the
D2Q9 lattice. The usual D2Q9, first suggested by Qian et al.
�5�, has a second-order equilibrium distribution and can be
obtained from the MB distribution by the method described
in Sec. II when the order of approximation is set to N=2 and
the temperature is kept constant and equal to To. This lattice
was chosen because some third-order moments can be incor-
porated into this second-order equilibrium distribution using
the quadrature procedure described in Sec. II.

In fact, for this LBE, when the weights obtained for the
second-order model are used, the norm of the third-order
Hermite polynomials Hxxy

�3� and Hxyy
�3� are also preserved. This

allows the inclusion of the related third-order moments in the
equilibrium distribution, which takes on the following form:

f i
eq = 	wi�1 + 3�u · ci� +

9

2
�u · ci�2 −

3

2
u2

+
27

2
�ux

2�cy,iuy�	cx,i
2 −

1

3

 + uy

2�cx,iux�	cy,i
2 −

1

3

�� .

�17�

Since this inclusion does not have any effect on the
second-order and lower equilibrium moments, the momen-
tum balance macroscopic equations continue to be affected
by third-order O�u3� errors and the question that remains to
be answered is whether the inclusion of these third-order
Hermite polynomials has any effect on the LBE stability.

In this manner the D2Q9 stability was analyzed by com-
paring the D2Q9 LBGK with a second- and a third-order
equilibrium distribution. These models were also compared
with the Lallemand and Luo, �18�, multiple relaxation time
�MRT� model, since this model was also built with the aim of
improving the LBE stability.

The present analysis can be found in Fig. 2 and is focused
on values of the relaxation time very close to its singular
limit 1 /2. The abscissa was chosen as 1 /�* in order to com-
pare with previous results from Ref. �18�. It can be observed
that both the second- and the third-order LBGK models
present a homogeneous decrease in the local speed stability

0.2

0.3

0.4

0 0.05 0.1

u
m

a
x

ν∗

θ = 0
θ = π/8
θ = π/4

FIG. 1. �Color online� Dependence of the stability limits on the
orientation of the wave vector k with respect to the x axis for the
D2Q9 LBGK model, where �*= ��*−1 /2� /3.
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limit when the relaxation time approaches 1/2, whereas this
limit remains insensitive to the �* variation in the MRT
model, up to �*=0.50251. Although the results presented by
Lallemand and Luo are not related to quasi-incompressible
models, as the present LBGK ones are, they attributed the
better performance of the MRT model with respect to the
second-order LBGK to the use of high frequency relaxation
terms in modeling the collision term.

Figure 2 shows, nevertheless, that the third-order LBGK
model has a considerably better performance when compared
with the second-order one and with the MRT model in what
concerns its stability limits. In this manner, the addition of
third-order velocity polynomials largely improve the stability
range and this improvement is due to the equilibrium distri-
bution representation itself and not to the use of extra relax-
ation terms in the collision model. This is an important con-
clusion, since it avoids the use of MRT dispersion relations
for the adjustable parameters—related to the short wave-
length nonhydrodynamic moments—to increase numerical
stability.

In fact, the improvement of the stability limits by increas-
ing the order of the polynomial approximation to the full MB
equilibrium distribution in LBGK models has shown to be a
general result. This can be seen in Fig. 3, where the second
order LBGK D2Q9 model is compared with the full third-
order D2V17 and with the full fourth-order D2V37 models,
derived by Philippi et al. �11�. These LBE are shown in the
Appendix of the present paper. For the athermal results
shown in Fig. 3 the temperature T was kept constant, T=T0.

In the use of LBM it is of great interest to solve high
Reynolds number flow problems and this usually requires
dealing with low values of the kinematic viscosity and, con-
sequently, with relaxation times very close to their lower
limits. A Chanpman-Enskog analysis, �13�, shows that for
these three models the dimensionless kinematic viscosity is
given by

�* =
1

a2	�* −
1

2

 . �18�

Since the scale factor a is dependent on the lattice, it is better
to draw the lattice maps in terms of the dimensionless kine-

0.1

0.2

0.3

0.4

0.5

1.9 1.95 2

u
m

a
x

1/τ∗

BGK - 2nd Order
BGK - 3rd Order

MRT

FIG. 2. �Color online� Maximum speed assuring linear stability
for models using the D2Q9 lattice.

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2

u
∗ m

a
x

ν∗

D2Q9
D2V17 Athermal
D2V37 Athermal

FIG. 3. �Color online� Stability map for the second-, third-, and
fourth-order athermal models.
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Chen et al

(a) Θ > 0

−0.8

−0.6

−0.4

−0.2

0

0 0.1 0.2 0.3

Θ
m
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ν∗/(Θ + 1)

D2V37

D2V25(W1)
D2V25(W6)
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(b) Θ < 0

FIG. 4. �Color online� Positive and negative maximum stable
values for deviation of the temperature from To for u*=0.
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matic viscosity, instead of using the dimensionless relaxation
time �* since in a great number of physical problems the
parameter of interest is the Reynolds number.

Figure 3 shows a detailed stability map for the local ve-
locity for these three models. It can be observed that the
stability limits remain larger for higher order LB models
even for very small viscosity values. In the case of the
D2V37 athermal model, the maximum velocity predicted, in
this analysis was u*=0.4, corresponding to a dimensionless
kinematic viscosity of �*=0.0007.

2. Thermal models

The main purpose of this study is to understand the rea-
sons why the LBE becomes unstable when the temperature
deviations increase. To address this subject, the temperature
deviations are expressed by

� =
T

To
− 1. �19�

The thermal LBE, D2V25�W1�, D2V25�W2�, and D2V37
presented by Philippi et al. �11�, are investigated and com-
pared with the thermal model of Chen et al. �9�, since the
latter model retrieves the correct macroscopic balance equa-
tions for the momentum and energy.

For the models considered in this analysis the dimension-
less kinematic viscosity can be written as

�* =
�� + 1�

a2 	�* −
1

2

 �20�

and the Prandtl number is equal to 1.
Since the viscosity is dependent on the temperature the

stability maps were drawn in terms of �* / ��+1�. Consider-
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FIG. 5. �Color online� Positive and negative maximum stable
values for deviation of the temperature from To for u*=0.2.
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FIG. 6. �Color online� Positive and negative maximum stable
values for deviation of the temperature from To for u*=0.4.
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ing that the model of Chen et al. has, in principle, no scale
factor, the value of a for this model was set in such way that
the macroscopic state with �=0 is the most stable one.

Figure 4 shows both the �a� positive and �b� negative lim-
its for �, considering a null local velocity. It can be observed
that the model of Chen et al. gives no stable values for the
temperature deviations, when �* / ��+1��0.2. The results
also show that the models proposed by Philippi et al. are
stable over a large interval of temperatures even when the
kinematic viscosity attains very low values. As in the previ-
ous section, the higher order D2V37 model has a broad sta-
bility range, followed by the D2V25�W6� LBE, although the
D2V25�W1� LBE may appear to be more stable for low vis-
cosity values, �* / ��+1��0.02. It can also be noted that the
curves are not symmetric with respect to the axis �=0. This
was to be expected since � is related to the internal energy
through e*= ��+1� /a2.

Figures 5 and 6 give the same � stability maps when the
local velocity u* increases, attaining the values u*=0.2 and

u*=0.4. The Chen et al. model is not included since this
model does not have any stability window in these stability
maps when the local velocity u*�0.2.

As expected, an increase in the local velocity reduces the
range of temperature deviations which results in a stable be-
havior.

The thermal LB models derived by Philippi et al. �11�, are
still stable over a large range of temperature deviations. Al-
though this range decreases with u* and disappears for very
small values of �* / ��+1� these results show that the D2V25
and D2V37 have very improved stability ranges when com-
pared to past models.

Another important conclusion from this and the previous
sections is that the main reason for LBE instability is a poor
discrete representation of the continuous Boltzmann equa-
tion. In fact, although the present analysis is restricted to
LBGK equations, in all the stability maps given in Figs. 4–6,
stability is always increased when the LBE is derived in a
systematic way from the continuous Boltzmann equation,
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leading to enhanced higher-order representations of the con-
tinuous Boltzmann equation.

IV. CONCLUSION

The main purpose of this paper was to investigate the
extent to which a temperature deviation can be supported by
a thermal LBE, particularly when its order of approximation
to the Boltzmann equation is increased. In this way, a linear
stability analysis of several thermal and athermal models was
performed.

Contrary to some conclusions that have been reported in
LBE literature �14,18,20�, our results show that the use of
additional speeds improves the stability, when the LBE is
derived in a systematic way, considering it as a polynomial
approximation to the continuous Boltzmann equation. Also
the quadrature weights and scaling factor must be chosen in
such a way as to preserve the same moments as the MB
distribution.

It has also been shown that for athermal models, the use
of a higher order LBE increases the linear stability limits of
the local velocity, u. In particular, the use of more complete
equilibrium distributions by the addition of suitable higher
order Hermite polynomials gives a better stability to the
LBE, although this does not affect the macroscopic behavior
of its Knudsen first-order moments.

The large number of discrete velocities, which makes the
present thermal LBE difficult to handle in computers in prac-
tical advection-diffusion problems, is a direct consequence of
the adoption of a discrete collision-propagation scheme in
deriving these models. The number of discrete velocities can
be suitably reduced by using alternative finite-difference
time and spatial discretization of the stream term in the Bolt-
zmann equation and is the subject of a ongoing work being
carried out by the authors.

In the same manner, although the present analysis was
restricted to LBGK models, it can be easily extended to col-
lision models that are beyond the BGK framework. An LBE
with two relaxation times LBE that avoids the unitary
Prandtl number restriction was systematically derived by the
authors, �16�, and will be the subject of a future paper on
stability analysis.
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APPENDIX: TWO-DIMENSIONAL LATTICES

The procedure described in Sec. II can be used to obtain
the LBE as progressively enhanced representations of the
continuous Boltzmann equation with the BGK collision
model, when the order of the polynomial approximation to
the MB equilibrium distribution is increased.

Seventeen discrete velocities were required for a full
third-order model, resulting in the D2V17 LBE shown in

Fig. 7�a� whose equilibrium distribution is given by

f i
eq,3 = 	wi�1 − � + a2ci · u +

a4

2
�ci · u�2 −

a2u2

2
+

a2ci
2�

2

+
a4�

2
ci

2�ci · u� +
a6

6
�ci · u�3 − 2�a2�ci · u�

−
a4u2

2
ci · u� , �A1�

where the weights and the scaling factor a are shown in
Table I.

The models with fourth-order terms in the equilibrium
distribution are the D2V25�W1�, D2V25�W6�, and the
D2V37.

TABLE I. Weights and scaling factor of D2V17 model.

i wi

0 575+193�193
8100

1–4 3355−91�193
18000

5–8 655+17�193
27000

9–12 685−49�193
54000

13–16 1445−101�193
162000

a �5�25+�193�

72

TABLE II. Weights and scaling factor of the D2V25 models.

i D2V25�W1� D2V25�W6�

0 2592a8−7380a6+11165a4−7950a2+2148
2592a8

16�6849−1135�33�

3�15−�33�4

1–4 12a4−13a2+4
32a8

64�2619−437�33�

15�15−�33�4

5–8 −24a6−89a4−80a2+24
240a8

512�7−�33�

�15−�33�4

9–12 −3a4+10a2−4
320a8

8�159+47�33�

15�15−�33�4

13–16 144a6−574a4+735a2−264
11340a8

2�17+�33�

�15−�33�4

17–20 4a4−15a2+12
12960a8

64�99−13�33�

105�15−�33�4

21–24 −12a6+49a4−70a2+36
13440a8

4�−93+19�33�

105�15−�33�4

a 1
6
� 1

2 � 53�1081−18�52413�1/3+251−�1081−18�52413�2/3

�1081−18�52413�1/3 � 1

2
� 1

2
�15−�33�
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The 25-velocity lattices are shown in Figs. 7�b� and 7�c�.
These two LBE recover the complete Knudsen first-order
advection-diffusion equations, without errors and their equi-
librium distribution can be written as

f i
eq,4i = f i

eq,3 + 	wi�a4

8
�2ci

4 − a2�2ci
2 + a2�u2 −

a4

4
u2ci

2�

−
3a4

2
��u · ci�2 +

a6

4
��u · ci�2ci

2 +
a4

8
u4

−
a6

4
�u · ci�2u2 −

a8

192
u4ci

2 +
a8

24
u2ci

2�u · ci�2� . �A2�

The weights and the scaling factor for these models can be
found in Table II.

Full fourth-order models required a set of 37 lattice vec-
tors in two-dimensions, giving the D2V37 LBE, shown in
Fig. 7�d� and its equilibrium distribution can be written as

f i
eq,4 = f i

eq,3 + 	wi�a4u4

8
+ a2�u2 + �2 −

a6u2

4
�ci · u�2

−
3a4

2
��ci · u�2 − a2�2ci

2 −
a4

4
�u2ci

2 +
a8

24
�ci · u�4

+
a6

4
��ci · u�2ci

2 +
a4

8
�2ci

4� �A3�

with the weights and scaling factor given in Table III.
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